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Fourier Series Method

� A simple method for the design of FIR filters is through the
use of the Fourier series in conjunction with the application
of a class of functions known as window functions.

� Arbitrary specifications can be achieved by using a method
proposed by Kaiser.

Note: The material for this module is taken from Antoniou,
Digital Signal Processing: Signals, Systems, and Filters„
Chap. 9.)
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Fourier Series Method

� A fundamental property of digital filters in general is that
they have a periodic frequency response with period equal
to the sampling frequency ωs, i.e.,

H (ej(ω+kωs)T ) = H (ejωT )

� Therefore, an arbitrary desired frequency response,
H (ejωT ), can be represented by a Fourier series as

H (ejωT ) =
∞∑

n=−∞
h(nT )e−jωnT (A)

where h(nT ) = 1
ωs

∫ ωs/2

−ωs/2
H (ejωT )ejωnT dω

are the Fourier series coefficients.
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Fourier Series Method Cont’d

· · ·
H (ejωT ) =

∞∑
n=−∞

h(nT )e−jωnT (A)

If we let ejωT = z in Eq. (A), we get

H (z) =
∞∑

n=∞
h(nT )z−n

This is the transfer function of an FIR filter with impulse
response h(nT ).
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Fourier Series Method Cont’d

Since the Fourier series coefficients are defined over the range
−∞ < n < ∞, two problems are associated with the Fourier
series method:

� The FIR filter obtained is of infinite length.
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Fourier Series Method Cont’d

Since the Fourier series coefficients are defined over the range
−∞ < n < ∞, two problems are associated with the Fourier
series method:

� The FIR filter obtained is of infinite length.

� The filter is noncausal because the impulse response is
nonzero for negative time.
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Fourier Series Method Cont’d

� A finite filter length can be achieved by truncating the
impulse response such that

h(nT ) = 0 for |n| > M

where M = (N − 1)/2.
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Fourier Series Method Cont’d

� A finite filter length can be achieved by truncating the
impulse response such that

h(nT ) = 0 for |n| > M

where M = (N − 1)/2.

� On the other hand, a causal filter can be obtained by
delaying the impulse response by a period MT seconds or
by M sampling periods.
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Fourier Series Method Cont’d

� Since delaying the impulse response by M sampling
periods amounts to multiplying the transfer function by z−M ,
the transfer function of the causal filter assumes the form

H ′(z) = z−M
M∑

n=−M

h(nT )z−n
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Fourier Series Method Cont’d

� Since delaying the impulse response by M sampling
periods amounts to multiplying the transfer function by z−M ,
the transfer function of the causal filter assumes the form

H ′(z) = z−M
M∑

n=−M

h(nT )z−n

� The frequency response of the causal filter is obtained by
letting z = ejωT in the transfer function, i.e.,

H ′(ejωT ) = e−jMωT
M∑

n=−M

h(nT )e−jnωT

and since |e−jMωT | = 1, delaying the impulse response by
M sampling periods does not change the amplitude
response.
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Example

Design a lowpass filter with a desired frequency response

H (ejωT ) ≈
{

1 for |ω| ≤ ωc

0 for ωc < |ω| ≤ ωs/2

where ωs is the sampling frequency.

Solution The Fourier series gives the impulse response of the
noncausal filter as

h(nT ) = 1
ωs

∫ ωc

−ωc

ejωnT dω = 1
ωs

[
ejωnT

jnT

]ωc

−ωc

= 1
nπ

(ejωc nT − e−jωc nT )

2j
= 1

nπ
sin ωcnT (B)

Truncating and delaying the impulse response by M sampling
periods immediately yields the required design.

Frame # 8 Slide # 11 A. Antoniou Part 1: FIR Filters – Window Method



Example Cont’d
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Fourier Series Method Cont’d

� The amplitude response of the filter (magnitude of the
frequency response) exhibits oscillations in the passband
as well as the stopband, which are known as Gibbs’
oscillations. They are caused by the truncation of the
Fourier series.
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Fourier Series Method Cont’d

� The amplitude response of the filter (magnitude of the
frequency response) exhibits oscillations in the passband
as well as the stopband, which are known as Gibbs’
oscillations. They are caused by the truncation of the
Fourier series.

� As the filter length is increased, the frequency of the
oscillations increases but the amplitude stays constant.
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Fourier Series Method Cont’d

� The amplitude response of the filter (magnitude of the
frequency response) exhibits oscillations in the passband
as well as the stopband, which are known as Gibbs’
oscillations. They are caused by the truncation of the
Fourier series.

� As the filter length is increased, the frequency of the
oscillations increases but the amplitude stays constant.

� In other words, we do not seem to be able to reduce the
passband and stopband errors below a certain limit by
increasing the filter length.

Therefore, the filters that can be designed with the Fourier
series method are of little practical usefulness.
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Fourier Series Method Cont’d

� The standard technique for the reduction of Gibbs’
oscillations is to truncate the infinite-duration impulse
response, h(nT ), through the use of a discrete-time
window function w (nT ).
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Fourier Series Method Cont’d

� The standard technique for the reduction of Gibbs’
oscillations is to truncate the infinite-duration impulse
response, h(nT ), through the use of a discrete-time
window function w (nT ).

� If we let
hw (nT ) = w (nT )h(nT )

then a modified transfer function is obtained as

Hw (z) = Z[w (nT )h(nT )]
= 1

2π j

∮
�

H (v )W
(z

v

)
v−1 dv

where H (z) is the original transfer function and W (z) is the
z transform of the window function.

Frame # 11 Slide # 17 A. Antoniou Part 1: FIR Filters – Window Method



Fourier Series Method Cont’d

� Evaluating Hw (z) on the unit circle z = ejωT gives the
frequency response of the modified filter as

Hw (ejωT ) = T
2π

∫ 2π/T

0
H (ej�T )W (ej(ω−�)T ) d� (C)

W (ejωT ) is the frequency spectrum of the window function
and the integral at the right-hand side is a convolution
integral.
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Window functions

Frequency spectrum of a typical window:
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Window functions Cont’d

� Windows are characterized by their main-lobe width, BML,
which is the bandwidth between the first negative and the
first positive zero crossings, and by their ripple ratio, r,
which is defined as

r = 100
Amax

AML
% or R = 20 log

Amax

AML
dB

where Amax and AML are the maximum side-lobe and
main-lobe amplitudes, respectively.
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Window functions Cont’d

� Windows are characterized by their main-lobe width, BML,
which is the bandwidth between the first negative and the
first positive zero crossings, and by their ripple ratio, r,
which is defined as

r = 100
Amax

AML
% or R = 20 log

Amax

AML
dB

where Amax and AML are the maximum side-lobe and
main-lobe amplitudes, respectively.

� The main-lobe width and ripple ratio should be as low as
possible, i.e., the spectral energy of the window should be
concentrated as far as possible in the main lobe and the
energy in the side lobes should be as low as possible.
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Window functions Cont’d

� The way by which Gibbs’ oscillations can be controlled by
using a window is illustrated in the next few slides which
are based on Eq. (C), i.e.,

Hw (ejωT ) = T
2π

∫ 2π/T

0
H (ej�T )W (ej(ω−�)T ) d� (C)
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Window functions Cont’d

� The way by which Gibbs’ oscillations can be controlled by
using a window is illustrated in the next few slides which
are based on Eq. (C), i.e.,

Hw (ejωT ) = T
2π

∫ 2π/T

0
H (ej�T )W (ej(ω−�)T ) d� (C)

� Let us consider the application of a generic window in the
design of a LP filter, assuming that the area under the
curve in the frequency spectrum of the window is 2π/T .
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Window functions Cont’d
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Window functions Cont’d
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Window functions Cont’d
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Window functions Cont’d
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Window functions Cont’d

From the illustrations, we conclude that

� the steepness of the transition characteristic of the filter
obtained depends on the main-lobe width of the window,
and

Frame # 20 Slide # 28 A. Antoniou Part 1: FIR Filters – Window Method



Window functions Cont’d

From the illustrations, we conclude that

� the steepness of the transition characteristic of the filter
obtained depends on the main-lobe width of the window,
and

� the amplitudes of the passband and stopband ripples
depend on the ripple ratio of the window.
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Kaiser Window function

� One of the most important windows is the Kaiser window.
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Kaiser Window function

� One of the most important windows is the Kaiser window.

� This is a parametric window which has an independent
control parameter α.
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Kaiser Window function

� One of the most important windows is the Kaiser window.

� This is a parametric window which has an independent
control parameter α.

� By choosing the value of α and the filter length, N, arbitrary
specifications can be achieved in lowpass (LP), highpass
(HP), bandpass (BP), and bandstop (BS) filters.
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Kaiser Window function Cont’d

Ripple ratio versus α:
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Kaiser Window function Cont’d

Main-lobe width versus α:
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Kaiser Window function Cont’d

The Kaiser window function is given by

wK (nT ) =
⎧⎨
⎩

I0(β)

I0(α)
for |n| ≤ M

0 otherwise
(D)

where

β = α

√
1 −

( n
M

)2
, I0(x ) = 1 +

∞∑
k=1

[
1
k !

(x
2

)k
]2

and M = (N − 1)/2. Its frequency spectrum is given by

WK (ejωT ) = wK (0) + 2
M∑

n=1

wK (nT ) cos ωnT
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Design of FIR Lowpass Filters

An FIR LP filter that would satisfy the specifications shown can
be readily designed by using a procedure due to Kaiser as
detailed in the next three slides.
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Design of FIR Lowpass Filters Cont’d

1. Determine the impulse response h(nT ) using the Fourier
series assuming an idealized frequency response

H (ejωT ) =
{

1 for |ω| ≤ ωc

0 for ωc < |ω| ≤ ωs/2
where ωc = 1

2(ωp + ωa)

(see Eq. (B).)
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Design of FIR Lowpass Filters Cont’d

1. Determine the impulse response h(nT ) using the Fourier
series assuming an idealized frequency response

H (ejωT ) =
{

1 for |ω| ≤ ωc

0 for ωc < |ω| ≤ ωs/2
where ωc = 1

2(ωp + ωa)

(see Eq. (B).)
2. Choose δ such that the actual passband ripple, Ap, is equal

to or less than specified passband ripple, Ãp, and the actual
minimum stopband attenuation, Aa, is equal or greater than
the specified minimum stopband attenuation, Ãa.
A suitable value is

δ = min (δ̃p, δ̃a)

where δ̃p = 100.05Ãp − 1

100.05Ãp + 1
and δ̃a = 10−0.05Ãa
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Design of FIR Lowpass Filters Cont’d

3. With the required δ defined, the actual stopband
attenuation Aa can be calculated as

Aa = −20 log10 δ
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Design of FIR Lowpass Filters Cont’d

3. With the required δ defined, the actual stopband
attenuation Aa can be calculated as

Aa = −20 log10 δ

4. Choose parameter α as

α =

⎧⎪⎨
⎪⎩

0 for Aa ≤ 21

0.5842(Aa − 21)0.4 + 0.07886(Aa − 21) for 21 < Aa ≤ 50

0.1102(Aa − 8.7) forAa > 50
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Design of FIR Lowpass Filters Cont’d

5. Choose parameter D as

D =
⎧⎨
⎩

0.9222 for Aa ≤ 21
Aa − 7.95

14.36
for Aa > 21

Then select the lowest odd value of N that would satisfy
the inequality

N ≥ ωsD
Bt

+ 1 where Bt = ωa − ωp
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Design of FIR Lowpass Filters Cont’d

5. Choose parameter D as

D =
⎧⎨
⎩

0.9222 for Aa ≤ 21
Aa − 7.95

14.36
for Aa > 21

Then select the lowest odd value of N that would satisfy
the inequality

N ≥ ωsD
Bt

+ 1 where Bt = ωa − ωp

6. Form wK (nT ) using Eq. (D).
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Design of FIR Lowpass Filters Cont’d

5. Choose parameter D as

D =
⎧⎨
⎩

0.9222 for Aa ≤ 21
Aa − 7.95

14.36
for Aa > 21

Then select the lowest odd value of N that would satisfy
the inequality

N ≥ ωsD
Bt

+ 1 where Bt = ωa − ωp

6. Form wK (nT ) using Eq. (D).
7. Form

H ′
w (z) = z−M Hw (z) where Hw (z) = Z[wK (nT )h(nT )]

and M = (N − 1)/2.
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Design of FIR Bandpass Filters

� The design method presented can be easily extended to
FIR HP, BP, and BS filters.

� Consider the case where a BP filter is required that would
satisfy the following specifications:

– Passband ripple ≤ Ãp

– Minimum stopband attenuation ≥ Ãa

– Lower passband edge ωp1

– Upper passband edge ωp2

– Lower stopband edge ωa1

– Upper stopband edge ωa2

– Sampling frequency ωs2

(Ãp and Ãa in dB and all frequencies in rad/s)
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Design of FIR Bandpass Filters Cont’d
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Design of FIR Bandpass Filters Cont’d

The only differences in the design of BP filters are to

� use the more critical of the two transition widths for the
design,

� use the idealized frequency of a BP filter for the
determination of the initial impulse response.
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Design of FIR Bandpass Filters Cont’d

The more critical transition width is

Bt = min[(ωp1 − ωa1), (ωa2 − ωp2)]
and hence the idealized frequency response for a BP filter is
deduced as

H (ejωT ) =

⎧⎪⎨
⎪⎩

1 for −ωc2 ≤ ω ≤ −ωc1

1 for ωc1 ≤ ω ≤ ωc2

0 otherwise

where ωc1 = ωp1 − Bt

2
ωc2 = ωp2 + Bt

2
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Example

Design an FIR BP filter satisfying the following specifications:

� Minimum attenuation for 0 ≤ ω ≤ 200: 45 dB

� Maximum passband ripple for 400 < ω < 600: 0.2 dB

� Minimum attenuation for 700 ≤ ω ≤ 1000: 45 dB

� Sampling frequency: 2000 rad/s
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Example Cont’d

The idealized impulse response is obtained as

h(nT ) = 1
ωs

∫ ωs/2

−ωs/2
H (ejωT )ejωnT dω

= 1
nπ

(sin ωc2nT − sin ωc1nT )

The application of the design procedure described will give

α = 3.9754

D = 2.580

N = 53

Frame # 34 Slide # 49 A. Antoniou Part 1: FIR Filters – Window Method



Example Cont’d
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Use of Ultraspherical Window Function

� A more recent approach for the design of FIR filters that
parallels the method described is a method based on the
ultraspherical window function proposed by Bergen and
Antoniou (see References).
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Use of Ultraspherical Window Function

� A more recent approach for the design of FIR filters that
parallels the method described is a method based on the
ultraspherical window function proposed by Bergen and
Antoniou (see References).

� For certain specifications, this new approach tends to give
more efficient designs, i.e., the minimum filter length that
will achieve the required specifications is somewhat lower.
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D-Filter

A DSP software package that incorporates the design
techniques described in this presentation is D-Filter. Please see

http://www.d-filter.ece.uvic.ca

for more information.

Frame # 37 Slide # 53 A. Antoniou Part 1: FIR Filters – Window Method



Summary

� A method for the design of FIR filters using a procedure
proposed by Kaiser has been described.
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Summary

� A method for the design of FIR filters using a procedure
proposed by Kaiser has been described.

� The method is easy to apply and requires a minimal
amount of computation.

Hence it can be used to design filters on-line in real or
quasi-real time applications.

The method is implemented in a DSP software package
known as D-Filter.
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Summary

� A method for the design of FIR filters using a procedure
proposed by Kaiser has been described.

� The method is easy to apply and requires a minimal
amount of computation.

Hence it can be used to design filters on-line in real or
quasi-real time applications.

The method is implemented in a DSP software package
known as D-Filter.

� The designs obtained are suboptimal, i.e., other methods
are available that would yield a lower filter order for the
same specifications, for example, the weighted-Chebyshev
method which will be described in Part 2 of this tutorial.
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This slide concludes the presentation.
Thank you for your attention.
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